
Toward the Control of a Multi-Jointed, Monoped Runner

Uluc. Saranli, William J. Schwind∗and Daniel E. Koditschek†
Department of Electrical Engineering and Computer Science

The University of Michigan
Ann Arbor, MI 48109-2110, USA

Abstract

In this paper, we propose a new family of controllers
for multi-jointed planar monoped runners, based on
approximate but accurate models of the stance phase
dynamics of a two degree of freedom “SLIP” leg. Un-
like previous approaches, the new scheme gives control
over all parameters of the system including the hop-
ping height, forward speed and duty cycle. The con-
trol laws are “deadbeat” in nature, derived by com-
puting the inverse of an approximate return map and
corrected by integral compensation. We use the ex-
pressions obtained in this way to control the original
SLIP leg as well as radically different, more realistic
four degree of freedom legs. In each case, the perfor-
mance of the deadbeat scheme in controlling forward
running velocity is compared to a modified Raibert
control strategy, whose experimental stability proper-
ties have been analyzed carefully in the low degree of
freedom setting.

1 Introduction

Biomechanists have gained great leverage in under-
standing basic principles of locomotion in creatures as
diverse as humans and cockroaches by considering the
“simple” SLIP model shown in Figure 1 as a metaphor
for running and hopping [1, 3, 4, 5]. While simple
to the biomechanist, even this model presents difficul-
ties to the engineer wishing to pursue formal analysis
and control since it is a hybrid system with nonlinear
stance dynamics which are not closed-form integrable.
Even so, previous work by two of the authors [15, 16]
provides approximate functional relationships for the
SLIP dynamics, enabling a consideration of control via
established techniques.

The question remains, however, whether such con-
sideration is warranted. Is the SLIP model any more
than a metaphor for running and hopping? Is it actu-
ally a control target aimed for by humans and animals
in spite of their greater degrees of freedom? If so, will
the careful consideration of such a simple model allow
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the engineer to create robots with dexterity reminis-
cent of humans and insects, or is this a “zoomorphic
fallacy” tantamount to building a flying machine with
flapping wings?

In answer to the former two questions, growing bio-
logical evidence, including recent work in our lab with
human running data, suggests that the SLIP dynamics
are more than just a metaphor. They are the literal
control target for the center of mass of the subjects we
have studied to date [14].

The latter question was in one sense answered by
the landmark work of Raibert and his students [12]
who used robots readily characterized by the SLIP
model. The power of such simple leg models was
demonstrated by the extensibility of the single leg
ideas to two and four legged runners as well as the
variety of behaviors generated: running with a num-
ber of gaits, jumping over obstacles, and performing
acrobatic maneuvers. However, the legs used in this
work were constructed to be SLIP-like. The question
remains: Is it possible to use the simple SLIP model to
characterize more complicated and biologically plausi-
ble leg models having ankle, knee and hip joints?

The biological evidence seems to provide a proof
by existence. Additionally, intuition regarding the
Lagrangian dynamics suggests that a “heavily-laden”
higher degree of freedom leg will behave “almost iden-
tically” to a 2 DOF SLIP leg [16].

Given this evidence, this paper reports on our pre-
liminary efforts to investigate the extensibility of SLIP
based controllers to more complicated leg models.

1.1 Scope of the Paper: Coupled Con-
troller for a “Special” SLIP Run-
ner

The first work in the control of SLIP runners was the
successful implementation by Raibert and his students
[12] of simple, roughly decoupled controllers to inde-
pendently control the hopping height and forward ve-
locity of their robots. This stunning success motivated
a series of papers [10, 17, 11, 15] characterizing the sta-
bility of these decoupled controllers.

In this paper we present a new coupled approximate
deadbeat controller for a SLIP runner having a “spe-
cial” spring potential model which makes a simplified
version of the stance dynamics closed-form integrable.



We then explore the applicability of the decoupled con-
troller (that we will term Raibert-like) and the new
coupled controller in more biologically plausible legs.

1.2 Contributions of the Paper: The
Power of the SLIP Model

In this paper we use simulation to suggest the possi-
bility that control laws designed for SLIP leg, can be
extended more biologically plausible leg models. As
far as we know, this represents the first attempt to ap-
ply any 2 DOF derived return map controller to more
complex single legs. We contrast a “deadbeat” and a
Raibert-like controller in so doing.

It is not surprising to find that the approximate
deadbeat controller outperforms the decoupled con-
troller in the 2 DOF leg for which they were both de-
veloped. 1 It is surprising to find that the decoupled
controller continues to function well in the 4 DOF leg.
However, it seems to us truly noteworthy that the ag-
gressive 2 DOF coupled controller can be adopted in
the same way to the 4 DOF leg as well, even to the
point of outperforming the decoupled algorithm. This
significantly bolsters our suspicion that the “collapse
of dimension” observed in biological control hierarchies
might be explained in terms of isometries of the kind
we have explored in [16].

Good performance can be achieved in the decoupled
scheme when the gain parameters are tuned, whereas
in contrast, the deadbeat controller is tuned automat-
ically in its defining formula. Moreover, it allows for
explicit control over duty factor2.

Introducing the ability to explicitly command duty
factor in addition to forward speed and hopping height
may be useful when considering higher level control
problems in dynamic locomotion such as foot place-
ment on irregular terrain. Hodgins [7] studied the use
of three different techniques for foot placement on ir-
regular terrain: controlling forward speed, flight du-
ration and stance duration. While we have not ex-
plored the implications of this work on foot placement
in irregular terrain, the coupled controller’s ability to
explicitly control forward speed, hopping height and
duty factor will prove advantageous in such contexts.

2 The “Special” SLIP Runner

2.1 Model and Assumptions

The SLIP model considered in this paper is shown in
Figure 1. The leg is assumed massless and the body

1The tradeoffs between deadbeat and less model dependent
controllers are well understood. The relative benefits in perfor-
mance promised by the former can evaporate in the presence of
noise and model mismatch that might not significantly under-
mine the latter.

2In fact, the introduction of the duty factor (the ratio of time
a leg is on the ground over a complete cycle of leg movements)
as a control objective is also a novelty of this work. While
commonly considered in the biomechanics literature for either
it’s power in classifying gait [2] or in its effect on metabolic
efficiency, it has been all but ignored in the robotics literature.

Lift-Off point
qrl Leg Length at Lift-Off
qθl Leg Angle at Lift-Off
q̇rl Radial Velocity at Lift-Off
q̇θl Angular Velocity at Lift-Off

Apex Point

by Apex Hopping Height

ḃx Apex Forward Velocity
φ TimeFlight

TimeStance

Touch-Down Point
qrt Leg Length at Touch-Down
qθt Leg Angle at Touch-Down
q̇rt Radial Velocity at Touch-Down
q̇θt Angular Velocity at Touch-Down

Table 1: Notation for the SLIP Leg Model

Figure 1: The spring loaded inverted pendulum(SLIP)
leg model(left) and the “ankle-knee-hip”(AKH) leg
model(right).

a point mass at the hip joint. During stance the leg
is free to rotate around its toe and the mass is acted
upon by a radial spring with potential U(qr). In flight,
the mass is considered as a projectile acted upon by
gravity. We assume there are no losses in either the
stance or flight phases.

Despite its structural simplicity, the stance dynam-
ics of this system are not integrable. Therefore, we
begin our formal consideration by eliminating grav-
ity from the stance dynamics yielding a simple central
force problem wherein energy and angular momen-
tum are both constants of motion and can be used
to integrate the stance dynamics. The structure of
the integrals suggest certain forms for the spring law
which are physically realistic and also admit closed
form integration [15, 16]. In particular, as in [15], we
have chosen to work with the compressed air spring
UA(qr) : = k/2(1/q2

r − 1/q2
r0).

Before formulating the return map, we discuss the
control inputs available for the SLIP runner. The first
control input is the leg angle at touchdown, qθt. We
assume that during flight we are able to swing the leg
to any desired angle relative to the ground. The other
control inputs come from the ability to tune the spring



potential. In this work, we choose to tune the spring
potential via choice of the stance compression and de-
compression spring constants, k1 and k2, respectively.

2.2 The Control Objective

In formulating the control problem it is natural to work
in the set of apex states (see Table 2 for state defini-
tions),

Xa = {Xa | Xa = [ bx, by, ḃx, φ ]T }

since its elements are easily observable and represent
directly natural control specifications such as “ jump
this high” or “run this fast”.

Given this perspective, an obvious next step is to
introduce the apex return map, fa : Xa × Uk 7→ Xa

where
U = {u | u = [ qθt, k1, k2 ]T }

is the set of control inputs. We are now in position to
consider the coupled control problem.

That is, suppose we want to achieve the desired
apex state (control objective),

X∗
a = [ bx, b

∗
y, ḃ

∗
x, φ∗ ]T (1)

One possible solution is the deadbeat control, that
is, the control input u∗ = [ q∗θt, k∗1 , k∗2 ]T such that
X∗

a = fa(Xa, u∗), effectively taking the current apex
state Xa to the desired state X∗

a in one cycle.
The most direct way to find the deadbeat control

u∗ would be to invert the map fa. However, the con-
trol inputs appear in the apex return map in a com-
plicated manner making a direct computation of the
inverse map difficult. In consequence, we introduce a
new coordinate system, which affords an almost com-
pletely closed form inverse to an approximate return
map.

2.3 The Liftoff Return Map

Consider the new state and control sets,

Zl = {Zl | Zl = [ qθl, El, ψl, φ ]T }

U = {u | u = [ qθt, a1, α ]T }
where El is the energy at liftoff, ψl is the ratio of for-
ward velocity to vertical velocity at liftoff and

a2
i :=

q2
rtq̇

2
θt + ki/(mq2

rt)
q̇2
rt

; i = 1, 2 (2)

α2 :=
a2
2

a2
1

=
q2
rtq̇

2
θt + k1/(mq2

rt)
q2
rtq̇

2
θt + k2/(mq2

rt)
(3)

Assuming qrl = qrt = qr0, the liftoff return map

fl : Zl × U 7→ Zl can be written as3

fl(Zl, u) :=




ϑl

El + ∆EU + ∆Eg

t(1,−ϑl) ◦ t(−1
α ,qθt)

(ψt)

tf

ts




(4)

where

ϑl = qθt − t(1,qθt)(ψt)(
α + 1

α
)

1
a1

acot(a1) (5)

∆EU = Uk2(qr)− Uk1(qr) =
1
2
mq̇2

rt(α
2 − 1) (6)

∆Eg = mg(qrl cos ϑl − qrt cos qθt) (7)

tf =
1
g

√
2
m

(
1

ψ2
l + 1

)
(√

El −mgqrl cos qθl− (8)

√
El + ψ2

l mgqrl cos qθl − (1 + ψ2
l )mgqrt cos qθt

)

ts =

√
q2
rt

q̇2
rt

(
1

1 + a2
1

)(
α + 1

α

)
(9)

and we define the following two parameter family of
functions,

t(σ1,σ2)(χ) := tan(σ1atan(χ) + σ2). (10)

Notice that apart from certain values of the param-
eters (e.g. σ1 = 1 and σ2 = 0) this family cannot be
expressed in terms of a single elementary function. Fi-
nally note that both ψt and q̇rt, which appear in (4)
can be expressed in terms of Zl and qθt.

3 The SLIP Deadbeat Con-
troller

We want the ability to control the SLIP hopper to
achieve a goal state,4

Z∗l = [ qθl, E∗l , ψ∗l , φ∗ ]T (11)

We are looking for the the deadbeat control, u∗,
such that

Z∗l = fl(Zl, u
∗) (12)

3Please refer to [13] for more details on the derivation of the
liftoff map.

4As in Section 2.2 we can only choose three independent con-
trol objectives, here we select El, ψl and φ



3.1 Inverting the Return Map to Find
Deadbeat Control

The simple form of the liftoff return map makes it pos-
sible, under a reasonable assumption, to reduce the in-
version of fl to the solution of a single equation in a
single variable. The assumption that makes this pos-
sible is

∆Eg ≡ 0 (13)

This assumption is reasonable in practice since ∆Eg

appears in (4) only as a result of the unnatural en-
ergy discontinuities at touchdown and liftoff due to
our no-gravity stance model, and does not appear in
the stance dynamics with gravity.

Given this assumption, solution of the El and φ
equations of (4) yields

α2(Zl, Zl
∗, qθt) = 2

m
El
∗−El

q̇2
rt(Zl,qθt)

+ 1 (14)

a2
1(Zl, Zl

∗, qθt) = (15)√
q2

rt

q̇2
rt(Zl,qθt)

(
α(Zl,Zl

∗,qθt)+1)
α(Zl,Zl

∗,qθt)

)
φ∗

tf (Zl,qθt)
− 1

We then substitute both (14) and (15) into the ψl

equation of (4) to arrive at a single equation in a single
unknown variable, qθt. Namely the equation

ψl
∗ = t(1,−ϑl(Zl,Zl

∗,qθt))◦ (16)
t( −1

α(Zl,Zl
∗,qθt)

,qθt)
(ψt(Zl, qθt))

The function of qθt on the right hand side of the
equation behaves nicely (e.g. it is monotone for most
choices of Zl, Z∗l ) and can be easily solved using nu-
merical methods.

After solving for qθt from (16), we substitute the
result into (14) and (15) to obtain α and a1. From
here, it is trivial to go back to k1 and k2, completing
the inversion.

Finally, we can express the desired liftoff state, Z∗l
in terms of X∗

a and the control inputs [13]. Substitut-
ing the appropriate relationships, (16) becomes

t(1,ϑl(Xa,Xa
∗,qθt))(ψl

∗(Xa, Xa
∗, qθt)) =

t( −1
α(Xa,Xa∗,qθt)

,qθt)
(ψt(Xa, qθt)) (17)

Equation (17) is used in the remainder of the paper
to solve for qθt numerically (since no closed form ex-
pression involving elementary functions is available) .
This is in turn used to find k1 and k2 using the closed
form expressions (2), (3), (15) and (14).

3.2 The Deadbeat and Modified Raib-
ert Controllers

The procedure outlined in Section 3.1 gives an open
loop approximate deadbeat controller for the ideal case
where the plant exactly matches (save the omission of
the ∆Eg term) the SLIP model with the compressed
air spring introduced in Section 2.1.

Previous work by two of the authors [16] investi-
gated the impact of the omission of gravity during

stance on the accuracy of the approximations and sug-
gested possible corrections to the model. To minimize
the effect of the prediction errors to controller per-
formance, we augment the inverse apex map with a
gravity correction policy, increasing the stance spring
constants as a function of the gravitational potential at
bottom [13]. The resulting control law is the approxi-
mate deadbeat controller we have been discussing.

For the purposes of comparison, we propose a de-
coupled alternative to this strategy based on Raibert’s
original control ideas. First, the forward velocity con-
trol is achieved by approximating a neutral leg place-
ment and adjusting it with a proportional error term,
yielding

qθt = asin
(

ẋts
2qrt

+ kẋ(ḃx

∗
− ḃx)

)
(18)

where kẋ and the choice of ẋ are controller param-
eters. Next, we implement a Raibert-like hopping
height controller by supplying the appropriate energy
at bottom, via a change in spring constant ∆EU =
Uk2(rb) − Uk1(rb), in order to provide the energy dif-
ference between two successive apex points. In the
absence of an estimate for rb, we use measurements
from previous strides. Similar to ẋ and kẋ, this is an
estimation parameter which requires careful tuning for
best performance.

Since both controllers, by their nature, will have
tracking errors, we use integral feedback compensa-
tion, yielding a discrete closed loop system of the form

Xa[k + 1] = fa(Xa[k], uc(Xa[k], X∗
a [k + 1] + e[k]))

e[k + 1] = e[k] +
1
ci

(X∗
a [k]−Xa[k])

where e[k] is the integral of the apex state error, X∗
a [k]

is the “reference” trace and uc(Xa, X∗
a) is a particular

gait-level controller, in this paper, either the deadbeat
or the modified Raibert controller.

3.3 Performance of the Deadbeat Con-
troller

Even with integral compensation deadbeat control is
an aggressive approach, imposing strong model depen-
dence on the control law. In the absence of analyti-
cal results for the stability of the proposed controller
in the presence of model mismatches, we explore in
simulation the performance of the deadbeat controller
and compare it to the benchmark of a modified Raib-
ert control strategy. In particular, in Section 3.3.2,
we begin by studying a simple SLIP, removing the as-
sumption that gravity can be ignored during stance.
We continue in Section 4.2 by considering two differ-
ent four DOF legs having ankle, knee and hip joints
and mass distributed throughout the leg.

Due to lack of space, this comparative study primar-
ily focuses on the forward velocity behavior resulting
from the control strategy. However, similar results are
seen when considering the hopping height and duty
factor behaviors [13].



3.3.1 Simulation Strategy

In this simulation study, we consider two families of
waveforms we wish the apex velocity trace to track:
one of step references and another of sinusoid refer-
ences.
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Figure 2: Sample runs of the deadbeat controller(solid
lines) and modified Raibert(dashed lines) controllers
applied to the 2 DOF SLIP leg for step and sinusoid
references over 35 strides. Dotted lines represent the
reference trace, while solid and dashed lines represent
the actual performance of the SLIP runner.

Examples of both are shown in Figure 2. In each
case, the hopper stabilizes around an initial running
speed and the desired reference waveform is introduced
at the end of 15 gait cycles.

When representing these references, we parameter-
ize a step by its initial value and step amplitude and a
sinusoid by its period and amplitude. Simulations are
run over a range of these two dimensional parameter
spaces. For a particular reference command, we sum-
marize the control performance by the mean square
error (MSE),

MSE =
1
N

N∑
k=15

‖ ḃ
∗
x[k]− ḃx[k] ‖2

where N is the number of strides taken.
In presenting responses to these step and sinusoid

reference command spaces, we collapse the initial ve-
locity and sinusoid amplitude dimensions by averag-
ing. In each case, 10 data points in the collapsed di-
mensions are chosen such that the forward velocity
command always remains in the range [0, 3]m/s.

3.3.2 Simulation Results

Figure 3, summarizes the simulation data for step and
sinusoid reference commands in forward velocity where
we fix b

∗
y = 1.2m and φ∗ = 3. The plots show the mean

and variance of MSE for both controllers as a function
of step amplitude(left) and sinusoid frequency(right).
The results show that for this plant, the deadbeat con-
troller provides better tracking than a modified Raib-
ert controller. This observation about the control per-
formance in not particular to the 2 DOF SLIP model,
for we will see similar results for a 4 DOF AKH leg
model in Section 4.2.

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.01

0.02

0.03

0.04

0.05

Amplitude of step input.

A
ve

ra
ge

 M
S

E
 o

ve
r 

in
iti

al
 v

el
oc

ity
.

0.04 0.06 0.08 0.1
0

0.005

0.01

0.015

0.02

0.025

0.03

Frequency of sin input.

A
ve

ra
ge

 M
S

E
 o

ve
r 

si
n 

am
pl

itu
de

.

Figure 3: Step(left) and Sinusoid(right) References:
The mean and variance of MSE as a function of the
step amplitude(left) and sinusoid frequency(right), for
the deadbeat(x) and modified Raibert(o) controllers.
For this plant, m = 50.48kg, b

∗
y = 1.2m, φ∗ = 3.

Simulations with sinusoid reference commands re-
veal another property of the deadbeat controller. Due
to its long settling time, the tracking error of the de-
coupled controller increases significantly for high fre-
quency reference commands. The deadbeat controller,
however, has shorter settling times — it ideally reaches
the desired trajectory in one cycle — and consequently
displays better tracking over a wide range of frequen-
cies.

4 A More Realistic Leg Model

In this section, the application of the SLIP dead-
beat controller to a much more complex dynamical leg
structure, the four degree of freedom ankle/knee/hip
model (Figure 1) is investigated. We consider two con-
siderably different configurations of the four degree of
freedom model: one with human-like and one with
kangaroo-like kinematics and mass distribution. We
present simulation evidence for the efficacy of the same
approach as was used in Section 3.3.2 for the 2 DOF
SLIP.

4.1 The 4 DOF AKH Leg Model

To simplify our thinking about this problem and make
the application of the SLIP deadbeat controller as
straightforward as possible, we consider a virtual SLIP
leg connecting the toe of the 4 DOF leg to its center of
mass (COM). The control objectives will remain the
same as for the 2 DOF leg: the achievement of de-
sired apex height, forward velocity and duty factor.
The control implementation, however, will be consid-
erably different, since the control inputs specified by
the deadbeat controller, u = [ qθt, k1, k2 ]T are not di-
rectly transferable to the control inputs of the 4 DOF
leg. Furthermore there is not a one to one correspon-
dence between the 4 DOF leg angles and qθt nor be-
tween the joint torques and the virtual leg force.

Consequently, we must develop rules for choos-
ing posture (the leg configuration) at touchdown to
achieve the desired qθt and the joint torques during



stance to achieve the desired virtual leg stiffnesses, k1

and k2. The manner in which we use biological evi-
dence to guide the mathematical considerations used
in forming these rules is presented in the next section.

4.2 Control of the AKH Leg

In controlling the four-jointed leg, we identify two lev-
els, a joint level torque control, and an apex level vir-
tual leg control.

Our controller attempts to force the COM trajec-
tory of the 4 DOF leg to mimic a SLIP leg by proper
choice of touchdown joint configuration and stance
torques 5. Our objective is to develop by closed loop
joint controllers a “target leg” dynamics, yielding vir-
tual leg dynamics as close as possible to SLIP dynam-
ics. We accomplish this by constraining the work done
by the joint torques to equal the work that would be
done by a virtual spring between the toe and the center
of mass, yielding

F
T
ḃ = τT q̇ (19)

where F
T

and ḃ are the virtual spring force and the
center of mass velocities respectively. Note that this is
substantially different from forcing the center of mass
to follow a prespecified target trajectory. The actual
stance trajectory is still governed by AKH dynamics.

We then combine the torque constraint of (19) with
a set of symmetry constraints of the form[

1 −1 1 −1
0 β −1 0

]
q =

[ −γ
0

]
(20)

where β and γ are symmetry parameters, fixed for any
particular locomotor. Intuitively, Equation 20 con-
strains the body link angle with respect to the ground
to be γ, and the knee angle to be proportional to the
ankle angle. In our simulations, the human-like leg
has γ = π/2 and β = 1 and the kangaroo-like leg, has
γ = π/4 and β = 1.

The leg configuration at touchdown is now com-
pletely specified, bridging the gap between the 4 dof
leg model and the SLIP controller. As a consequence,
we are able to use the controller principles explained
in the preceding sections without any modifications.
From the point of view of the apex controller, the com-
bination of the torque control compensated leg dynam-
ics are very close to SLIP dynamics.

We investigate the validity of this approach in sim-
ulation on two different 4 DOF legs, one human-like
and one kangaroo-like whose structural parameters are
given in Table 2.

As in Section 3.3.2 we issue step and sinusoid ref-
erence forward velocity commands and measure the
tracking performance with the results shown in Fig-
ures 4 and 5, respectively. They support the validity
of two major assumptions in the paper. First, they
confirm that the SLIP model for running is applica-
ble to significantly different kinematics and dynamics.

5Please refer to [13] for a detailed discussion.

[ma, mk, mh, mb] [la, lk, lh, lb]

human [26.4, 19.3, 3.5, 1.28] [0.15, 0.35, 0.40, 0.35]
kangaroo [30, 30, 5, 4] [0.5, 0.7, 0.6, 0.5]

Table 2: Structural simulation parameters for human-
like and kangaroo-like four degree of freedom legs [9].

Second, they suggest that, the connection between the
SLIP model and the four-jointed complex model we
consider does not rely on the particular “target pose”.
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Figure 4: Step Reference: The mean and variance of
MSE for human-like (left) and kangaroo-like (right)
legs as a function of the step amplitude with the dead-
beat(x) and modified Raibert(o) controllers. For this
plant, b

∗
y = 1.2m, φ∗ = 3.
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Figure 5: Sinusoid Reference: The mean of MSE
for human-like (left) and kangaroo-like (right) legs as
a function of the sinusoid frequency with the dead-
beat(x) and modified Raibert(o) controllers. For this
plant, b

∗
y = 1.2m, φ∗ = 3.

5 Conclusion

The present work serves as a tribute to the foresight of
both those in the biomechanics community and those
in the engineering community, such as Raibert, who
have insisted that the SLIP model is the right place
to begin thinking about dynamic locomotion. For not
only is this model useful in describing the COM behav-
ior of a multi-joint monoped runner as the biomecha-
nists have claimed, but also for prescribing the control
needed to achieve some desired behavior as Raibert



originally intuited. In particular, in this paper the
control prescription arises from the extension of the 2
DOF SLIP deadbeat control to the higher degree of
freedom AKH leg.

As far as we are aware, this is the first time that
the SLIP model has been shown to be applicable to
more zoomorphically realistic legs. Therefore, we be-
lieve this work will be of interest to both the engineer-
ing and biomechanics communities.

5.1 Relevance to Engineering

We witness in nature that advantage is conveyed to
walkers and runners with higher degree of freedom
legs. As such, while Raibert’s robots demonstrated
remarkable abilities, it seems certain in the long term
that walking and running robots must be designed
with higher degree of freedom legs. But not much
work has been undertaken in building multi-degree of
freedom runners, presumably because of the difficulty
in “getting it right”. Instead, research has progressed
more rapidly in the direction of high degree of free-
dom dynamic animations, such as the exciting work
by Hodgins and her students [8]. In either case, it
would be useful to design easily tunable controllers in
terms of high level behaviors, such as desired speed
and hopping height.

We feel that the work presented in this paper is
the first step in the direction of easily implementable,
provably correct task based controllers for the high de-
gree of freedom, zoomorphically realistic problem. We
are encouraged by our current successes and hope to
pursue the implementation of these deadbeat inspired
controllers into dynamic simulations and experimental
platforms with increasing degrees of freedom.

5.2 Relevance to Biomechanics

Given the almost universal ability to characterize an
animal’s COM behavior by the simple SLIP model,
biomechanists are beginning to question how the many
degrees of freedom are coordinated to mimic the 2
DOF SLIP [6]. In other words, they would like to
identify the joint level controllers that in combination
give the SLIP-like behavior of the COM. Given the
difficulties of such a task and the absence of any other
control strategies, we feel that the multi-joint deadbeat
control strategy presented in this paper may serve as
a good initial guide for addressing this problem.

Acknowledgements

We thank Prof. Claire Farley for a number of infor-
mative tutorial discussions on the biomechanics of hu-
man running. We also thank Prof. Jessica Hodgins
and Dr. Nancy Pollard for their help with the 4 DOF
simulations, in particular for providing the mass and
kinematic data needed to make the human simulations
more realistic.

References

[1] R. M. Alexander. Three uses for springs in legged lo-
comotion. International Journal of Robotics Research,
9(2):53–61, 1990.

[2] R. M. Alexander and A. S. Jayes. Vertical movement
in walking and running. Journal of Zoology, London,
185:27–40, 1978.

[3] R. Blickhan. The spring-mass model for running
and hopping. Journal of Biomechanics, 22:1217–1227,
1989.

[4] R. Blickhan and R. J. Full. Similarity in multilegged
locomotion: Bouncing like a monopode. Journal of
Comparative Physiology, 173:509–517, 1993.

[5] C. T. Farley, J. Glasheen, and T. A. McMahon. Run-
ning springs: Speed and animal size. Journal of Ex-
perimental Biology, 185:71–86, 1993.

[6] C. T. Farley, H. P. Houdijk, C. van Strien, and
M. Louie. Mechanisms for leg stiffness adjustment
during bouncing gaits. 1997. In Review.

[7] J. K. Hodgins. Legged Robots on Rough Terrain:
Experiments in Adjusting Step Length. PhD thesis,
Carnegie Mellon University, November 1989. CMU-
CS-89-151.

[8] J. K. Hodgins. Three-dimensional human running. In
ICRA, Minneapolis, MN, May 1996.

[9] J. K. Hodgins and N. S. Pollard. Typical human and
kangaroo leg characteristics. Personal Communica-
tion.

[10] D. E. Koditschek and M. Bühler. Analysis of a simpli-
fied hopping robot. International Journal of Robotics
Research, 10(6):587–605, December 1991.

[11] R. T. M’Closkey and J. W. Burdick. Periodic mo-
tions of a hopping robot with vertical and forward
motion. International Journal of Robotics Research,
12(3):197–218, 1993.

[12] M. H. Raibert. Legged Robots That Balance. MIT
Press, Cambridge, MA, 1986.

[13] U. Saranli and D. E. Koditschek. Analysis and con-
trol of slip and multi-jointed monoped planar hoppers.
Technical report, EECS, UM, Ann Arbor, MI, 1998.
In Preparation.

[14] W. J. Schwind, C. T. Farley, and D. E. Koditschek.
Identification of springs in human running, 1997. Pa-
per in Progress.

[15] W. J. Schwind and D. E. Koditschek. Control of for-
ward velocity for a simplified planar hopping robot. In
Proceedings of the IEEE International Conference On
Robotics and Automation, Nagoya, Japan, May 1995.

[16] W. J. Schwind and D. E. Koditschek. Characteriza-
tion of monoped equilibrium gaits. In Proceedings of
the IEEE International Conference On Robotics and
Automation, Albuquerque, NM, April 1997.

[17] A. F. Vakakis, J. W. Burdick, and T. K. Caughy. An
‘interesting’ strange attractor in the dynamics of a
hopping robot. International Journal of Robotics Re-
search, 10(6):606–618, December 1991.


