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Abstract

We report on the design and analysis of a con-

troller that can achieve dynamical self-righting of

our hexapedal robot, RHex. Motivated by the ini-

tial success of an empirically tuned controller, we

present a feedback controller based on a saggital

plane model of the robot. We also extend this con-

troller to develop a hybrid pumping strategy that

overcomes actuator torque limitations, resulting in

robust flipping behavior over a wide range of sur-

faces. We present simulations and experiments to

validate the model and characterize the performance

of the new controller.

I. Introduction

RHex (see Figure 1) is an autonomous hexa-

pod robot that negotiates badly irregular terrain at

speeds better than one body length per second [24].

In this paper, we report on efforts to extend RHex’s

present capabilities with a self-righting controller.

Motivated by the successes and limitations of an em-

pirically developed largely open-loop “energy pump-

ing” scheme, we introduce a careful multi-point con-

tact and collision model so as to derive the maxi-

mum benefit of our robot’s limited power budget.

We present experiments and simulation results to

demonstrate that the new controller yields signif-

icantly increased performance and extends on the

range of surfaces over which the self-righting ma-

neuver succeeds.

Fig. 1. RHex 1.5

Physical autonomy — onboard power and com-

putation — is essential for any robotic platform

intended for operation in the real world. Beyond

the strict power and computational constraints, un-

structured environments demand some degree of be-

havioral autonomy as well, requiring at least basic

self-manipulation capabilities for survivability in the

absence (or inattention) of a human operator. Even

during teleoperation, where the computational de-

mands on the platform are less stringent, the ability

to recover from unexpected adversity through self-

manipulation is essential. Space applications such

as planetary rovers and similar exploratory missions
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probably best exemplify the setting where these re-

quirements are most critical [1].

Recovery of correct body orientation is among the

simplest of self-manipulation tasks. In cases where

it is impossible for a human operator to intervene,

the inability to recover from a simple fall can render

a robot completely useless and, indeed, the debili-

tating effects of such accidents in environments with

badly broken terrain and variously shaped and sized

obstacles have been reported in the literature [3].

RHex’s morphology is roughly symmetric with

respect to the horizontal plane, and allows nearly

identical upside-down or right-side up operation, a

solution adopted by other mobile platforms [15].

However, many application scenarios such as teleop-

eration and vision based navigation entail a nominal

orientation arising from the accompanying instru-

mentation and algorithms. In such settings, design-

ers typically incorporate special kinematic struc-

tures (for example, long extension arms or reconfig-

urable wheels [6], [10], [31]) to secure such vital self-

righting capabilities. In contrast, the imperatives

of dynamical operation that underly RHex’s design

and confer its unusual mobility performance [24]

preclude such structural appendages. RHex must

rely on its existing morphology and dynamic ma-

neuvers to achieve the necessary self-righting abil-

ity.

There is a significant body of literature in the

control of locomotion addressing similar problems

arising from both the dynamic and the hybrid na-

ture of such systems. Raibert’s work on dynami-

cally stable hopping robots [22] was influential in

the development of various other systems capable

of performing dynamical maneuvers such as biped

gymnastics [11] and brachiating robots [19]. How-

ever, despite structural similarities, these methods

are not directly applicable to our problem as they

either aim to stabilize the system around neutral

periodic orbits or concentrate on the control of non-

holonomic flight dynamics.

Quasi-static posture control has been explored in

the legged robotics literature [20], [32], but not the

dynamical problem of present concern. In partic-

ular, the problem of dynamically righting a legged

platform introduces the need to consider intermit-

tent multiple contacts and collisions, while incur-

ring constraints on feasible control strategies famil-

iar within the legged robotics literature, arising from

morphology, actuator and sensory limitations. Our

recourse to an energy pumping control strategy is

informed by earlier work on dynamically dexterous

robotics such as the swing-up of a double pendu-

lum [18], [28], [34] which involves some of these con-

straints, but notably, does not require consideration

of the hybrid nonlinearities that are inherent to our

system (e.g. see Figure 4). Similarly, recent work on

jumping using computational learning algorithms

[35] and simulation studies of ballistic flipping [7],

[8] using Poincaré maps for the design stable con-

trol of one-legged locomotion contend with aspects

of dynamics relevant to self-righting, but consider

neither multiple colliding contacts nor inherent or

explicit constraints on feasible control inputs.

In this light, the central contributions of this pa-

per include: i) introducing a new multiple point col-

lision/contact model that characterizes RHex’s be-

havior during the flipping maneuver; and ii) the de-

scription of a new torque control strategy that uses

the model to maximize the energy injected into the

system in the face of these constraints (i.e., consis-

tent with maintaining a set of postural invariants

integral to the task at hand). We present experi-

mental and simulation evidence to establish the va-

lidity of the model and demonstrate that the new

controller significantly improves on the performance

of our first generation open-loop controller.
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II. Flipping with RHex

RHex’s dynamic locomotion performance arises

from our adoption of specific principles from biome-

chanics such as structural compliance in the legs and

a sprawled posture [1]. Furthermore, its mechanical

simplicity, with only one actuator per leg and min-

imal sensing, admits robust operation in outdoor

settings over extended periods of time.

The rotation axes for RHex’s actuators are all

parallel and aligned with its transverse horizontal

body axis. Consequently, the most natural backflip

strategy for RHex pivots the body around one of

its endpoints. Pitching the body in this manner,

while keeping one of the body endpoints in contact

with the ground, maximizes contact of the legs with

the ground for the largest range of pitch angles and

thus promises to yield the best utilization of avail-

able actuation. In contrast, flipping by producing a

sideways rolling motion suffers from early liftoff of

three legs on one side as well as the longer protru-

sion of the middle motor shafts.

For surfaces with sufficiently low lateral inclina-

tion, RHex’s rectangular body and lateral symmetry

restricts the motion described above to the saggital

plane. When the tail or the nose of the body is

fully in contact with the ground, the resulting sup-

port line provides static lateral stability as long as

the gravity vector falls within the contact surface

(see Section III). As a result, a set of planar models

suffices to analyze the flipping behavior within the

acceptable range of inclinations.

Clearly, large slopes will invalidate this assump-

tion and may lead to non-planar motion. However,

we limit the scope of this paper to analysis on rel-

atively flat terrain wherein the planar nature of the

flipping motion remains valid. Before formally in-

troducing the planar flipping models in Section III,

we will find it useful to describe the general struc-

ture of the flipping controller, as well as motivations

and assumptions underlying its design.

A. Basic Controller Structure

Start

Pose I

Pose II

Apex

Impact

Thrust I

Thrust II

Ascent

Descent

Collision

Fallback

Flip

Fig. 2. Sequence of states for the flipping controller

All the flipping controllers presented in this pa-

per share the same finite state machine structure,

illustrated in Figure 2. Starting from a stationary

position on the ground, the robot quickly thrusts it-

self upward while maintaining contact between the

ground and the endpoint of its body (poses I and

II in Figure 2) as the front and middle legs succes-

sively leave the ground. Depending on the frictional

properties of the leg/ground contact , this thrust

results in some initial kinetic energy of the body

that may in some cases be sufficient to allow “es-

cape” from the gravitational potential well of the

initial configuration and fall into the other desired

configuration. In cases where a single thrust is not

sufficient to flip the body over, the robot reaches

some maximum pitch lying within the basin of the

original configuration, and falls back toward its ini-

tial state. Our controller then brings the legs back

to Pose I of Figure 2 and waits for the impact of

the front legs with the ground, avoiding negative

work — a waste of battery energy given the famil-

iar power-torque properties of RHex’s conventional
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DC motors. The impact of the compliant front legs

with the ground in their kinematically singular con-

figuration recovers some of the body’s kinetic en-

ergy, followed by additional thrust from the middle

and back legs, during the period of decompression

and flight of the front leg — i.e., during a phase in-

terval when it is possible for the legs in contact to

perform positive work on the robot’s mass center.

The maximum pitch attained by the body increases

with each bounce up until the point where the robot

flips or the energy that can be be imparted by the

thrust phase balances collision losses at which point

it must follow that flipping is not possible.

B. Observations and Motivation

The performance of the flipping controller is pre-

dominantly determined by the amount of energy

that can be injected into the system through the

“thrust” phase. Contrarily, the feasibility of the hy-

brid pumping mechanism depends on the success of

the thrust controller in maintaining body ground

contact to ensure robust recovery of kinetic energy

at impact. The main contribution of this paper is

the design of effective thrust controllers and their

analysis in conjunction with the hybrid pumping

scheme to characterize the performance of flipping.

Our first generation flipping controller was pri-

marily open-loop at the task level, wherein we used

high gain proportional derivative control (PD) to

“track” judiciously selected constant velocity leg

sweep motions [25], [26]. This scheme was motivated

by its simplicity as well as the lack of adequate pro-

prioceptive sensing capabilities in our experimental

platform.

As reported in [26], this simple strategy is capa-

ble of inducing a backflip of our earlier experimental

platform (RHex version 0.5) for a variety of sur-

faces (see Extensions 1 and 2 for movies). However,

it does so with relatively low efficiency (in terms

of the number of required bounces) and low relia-

bility. It shows very poor performance and relia-

bility on softer surfaces such as grass and dirt —

outdoor environments most relevant to RHex’s pre-

sumed mission [1], [24]. Furthermore, as we report

in this paper, it fails altogether on newer versions of

RHex which are slightly larger and heavier. To per-

mit a reasonable degree of autonomous operation,

we would like to improve on the range of conditions

under which flipping can function. This requires a

more aggressive torque generation strategy for the

middle and rear legs. However, empirically, we find

that driving all available legs with the maximum

torque allowed by the motors usually results in ei-

ther the body lifting off the ground into a standing

posture, or unpredictable roll and yaw motions elim-

inating any chance for subsequent thrust phases.

Rather, we seek a strategy that can be tuned to

produce larger torques aimed specifically at pitch-

ing the body over. This requires a detailed model

of the manner in which the robot can elicit ground

reaction forces in consequence of hip torques oper-

ating at different body states and assuming varying

leg contact configurations.

III. Planar Flipping Models

In this section, we present a number of planar

models, starting with a generic model in Section

III-B, followed by various constrained versions in

Sections III-E and III-F. In each case, we derive

the corresponding equations of motion, based on the

common framework of Section III-C.

A. Assumptions and Constraints

Several assumptions constitute the basis for our

modeling and analysis of the flipping behavior.

Assumption 1 The flipping behavior is primarily

planar.

The controller structure described in Section II-A

operates contralateral pairs of legs in synchrony. On
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flat terrain, the robot’s response lies almost entirely

in the saggital plane and departures are rare enough

to be negligible. Our models and analysis will hence

be constrained to the saggital plane.

Even though the scope of the present paper does

not address in detail the flipping behavior on sloped

surfaces, this assumption can be intuitively justified

by the observation that the full contact of one of the

body endpoints with the ground, if successfully en-

forced by the controller, yields lateral static stability

by canceling the lateral moment induced by the ac-

tion of gravity on the body. The largest moment

is produced when the body is standing vertically

on one of the endpoints, and can be counteracted

for slopes of up to atan(w/l) where w is the body

width and l is the body length. Even though we

do not present systematic experiments to verify this

observation, this simple model suggests the poten-

tial validity of our planar analysis for a considerable

range of lateral slopes as well.

Assumption 2 The leg masses are negligible rela-

tive to the body mass.

We assume that the leg masses are sufficiently

small so that their effect on the body dynamics is

limited to the transmission of the ground reaction

forces at the toes to the body when they are in con-

tact with the ground. This assumption is a fairly

accurate approximation as a result of the very light

fiberglass legs on our experimental platform.

Assumption 3 The tail of the body should main-

tain contact with the ground throughout the flipping

action.

This assumption is motivated by a number of ob-

servations gathered during our empirical flipping ex-

periments. First, during the initial thrust phases,

the front and middle legs provide most of the torque.

Configurations where the tail endpoint of the body

is in contact with the ground yield the longest du-

ration of contact for these legs, harvesting greatest

possible benefit from the associated actuators.

Furthermore, collisions of the body with the

ground, which introduce significant losses due to

the high damping in the body structure designed

to absorb environmental shocks, can be avoided by

preserving contact with the ground throughout the

flipping action. It is also clear that one would not

want to go through the vertical configuration of the

body when the tail endpoint is not in contact with

the ground as such configurations require overcom-

ing a higher potential energy barrier and would be

less likely to succeed.

Finally, the body ground contact is essential for

maintaining the planar nature of the behavior and

eliminating body roll. This is especially important

for repeated thrust attempts of the hybrid energy

pumping scheme, which rely on the robot body be-

ing properly aligned with as much of the impact

kinetic energy recovered as possible.

In light of these assumptions, the design of thrust

controllers has to satisfy two major constraints:

keeping the tail endpoint of the body on the ground

and respecting the torque limitations of the actua-

tors.

B. The Generic Model

Even though our analysis will be largely con-

fined to control strategies that enforce configura-

tions where the tail of the body remains on the

ground, we will find it useful to introduce a more

general model to prepare a formal framework in

which we will define various constraints.

Figure 3 illustrates the generic planar flipping

model. Three massless rigid legs — each represent-

ing a pair of RHex’s legs — are attached to a rect-

angular rigid body with mass m and inertia I. The

attachment points of the legs are fixed at di, along

the midline of the rectangular body. This line also
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Fig. 3. Generic 3DOF planar flipping model

defines the orientation of the body, α, with respect

to the horizontal. The center of mass is midway be-

tween the points N and T , defined to be the “nose”

and the “tail”, respectively. The body length and

height are 2d and 2h, respectively. Finally, we as-

sume that the body-ground and toe-ground contacts

experience Coulomb friction with coefficients µb and

µt, respectively. Table I summarizes the notation

used throughout the paper.

Neither the rectangular body nor the toes can

penetrate the ground. Our model hence requires

that the endpoints of the body be above the ground,

zb >

{
d sin |α|+ h cosα if |α| < π/2

d sin |α| − h cosα otherwise
, (1)

and that a leg must reach the ground

zb > l − di sinα (2)

before it can apply any torque to the body. As a re-

sult, the configuration space1 (α, zb) is partitioned

into various regions, each with different kinematic

and dynamic structure as illustrated in Figure 4. In

the figure, the solid line corresponds to configura-

tions where one of the body endpoints is in con-

tact with the ground, determined by (1). All the

configurations below this line (white region) are in-

accessible as they would require the body to pene-

trate the ground. Similarly, different shades of gray

1Contact constraints are invariant with respect to horizon-

tal translation, allowing for the elimination of yb.

States and dependent variables

c ∈ X System configuration vector

q := [ c, ċ ]T System state vector

yb, zb Body center of mass(COM) coordinates

α Body pitch

yt, zt Coordinates of the tail endpoint

φi, γi Hip and toe angles for ith leg

yi, ẏi position and velocity of the ith toe

Contact forces

F yi , Fi GRF components on ith toe

F yc , F
z
c GRF components on the tail

Control inputs

τ ∈ R3 Hip torque control vector

T (q) ⊆ R3 Set of allowable torque vectors

Planar model parameters

d, h Body length and height

di, l Leg attachment and length

µt, µb Coulomb coeff. for toes and body

m, I Body mass and inertia

kr Coeff. of restitution for rebound

Motor model parameters

vs Power supply voltage

rd, ra Motor drive and armature resistances

Ks,Kτ Motor speed and torque constants

mg, hg Motor gear ratio and efficiency

TABLE I

Notation used throughout the paper.

in Figure 4 represent the number of legs that can

reach the ground for a given configuration, with the

boundaries determined by (2). All legs can reach

the ground for configurations shaded with the dark-

est gray whereas all legs must be in flight for those

configurations shaded with the lightest gray. The

shaded regions also extend naturally to configura-

tions with body ground contact.
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d 0.25 m

d1 −0.19 m

d2 0.015 m

d3 0.22 m

h 0.05 m

m 8.5 kg

I 0.144 kgm2

l 0.17 m

TABLE II

RHex’s kinematic and dynamic parameters.

C. Framework and Definitions

In deriving the equations of motion for all con-

strained models in this paper, we use a Newton-

Euler formulation, presented in this section as to

unify the free-body diagram analysis of all three

models.

Figure 5 illustrates the generic free-body dia-

grams for the body link and one of the leg links.

Based on whether a link is in flight, in fixed con-

tact with the ground or sliding on the ground, the

associated force and moment balances yield linear

equations in the unknown forces and accelerations,

taking the form

A(c)v = b(c, ċ) + D(c) τ . (3)

PSfrag replacements
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Fig. 5. Free body diagrams for the body and one of the legs.

where τ := [ τ1, τ2, τ3 ]T is the torque actuation

vector, c is the configuration vector and v is the

vector of unknown forces and accelerations. The

definitions of both c and v, as well as the matrices

A(c), b(c, ċ) and D(c) are dependent on the partic-

ular contact configuration and will be made explicit

in subsequent sections.

D. Unconstrained Dynamics with No Body Contact

Ideally, our flipping controllers will attempt to

maintain contact between the body and the ground.

However, part of our analysis requires the investiga-

tion of the unconstrained dynamics.

For this general case, no ground reaction forces

act on the body link and the tail end of the body is

free to move. Furthermore, assuming that all legs

are in sliding contact with the ground, the friction

forces take the form F yi = −µt Fi sign(ẏi), where ẏi

represents the translational velocity of the ith foot.

In this case, the vector of unknowns and the system

state are defined as

v := [ F1, F2, F3, α̈, ÿt, z̈t ]T (4)

c := [ α, yb, zb ]T .

For each leg, we can write the moment balance

equations as

(l cos γi + lµ̄i sin γi)Fi = −τi , (5)

where µ̄i := −µt sign(ẏi) is the effective Coulomb

friction coefficient and γi corresponds to the toe an-

gle as shown in Figure 3. In the operational range of
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the flipping controller, these equations are solvable.

However, there are interesting “jamming” singulari-

ties in the remaining parts of the state space, which

we investigate in Section III-G.

Similarly, force and moment balances for the body

link yield

µ̄1F1 + µ̄2F2 + µ̄3F3 −mÿb = 0

F1 + F2 + F3 −mz̈b = mg
3∑

i=1

(di cosα− diµ̄i sinα)Fi − Iα̈ =

3∑

i=1

τi (6)

where ÿb and z̈b are components of the body accel-

eration and can be written as affine functions of α̈,

ÿt and z̈t by simple differentiation of the kinematics.

The combination of (5) and (6) yields the matrices

A(c), b(c, ċ) and D(c).

E. Dynamics with Sliding Body, Sliding Toe Con-

tacts

In general, we observe that throughout the execu-

tion of our flipping behaviors, both the leg and body

contacts slide on the ground. As a consequence, we

can rewrite the horizontal components of ground re-

action forces in terms of their vertical components

using Coulomb’s friction law. Here, the vector of

unknown quantities becomes

v := [ F1, F2, F3, α̈, F
z
c , ÿt ]T (7)

c := [ α, yb ]T ,

yielding a system with two degrees of freedom —

the body pitch and the horizontal position of the

tail.

In this case, the moment balance for each leg re-

mains the same as (5) and the body balance equa-

tions become

µ̄1F1 + µ̄2F2 + µ̄3F3 − µ̄b F zc −mÿb = 0

F1 + F2 + F3 + F zc −mz̈b = mg

3∑

i=1

(di cosα− diµ̄i sinα)Fi + ((h+ µ̄bd) sinα

+(µ̄bh− d) cosα)F zc − Iα̈ =
3∑

i=1

τi ,

(8)

where, once again, system kinematics yields the

body accelerations ÿb and z̈b as functions of α̈ and

ÿt. As before, the combination of (5) and (8) yields

the matrices A(c), b(c, ċ) and D(c).

F. Dynamics with Sliding Body, Fixed Rear Toe

Contact

The third and final contact configuration we con-

sider corresponds to cases where the rear toe is sta-

tionary under the influence of stiction. This model

is primarily motivated by the observed behavior of

various flipping controllers, where the rear toe stops

sliding following the liftoff of the front and mid-

dle pairs of legs. Consequently, we incorporate this

model into our feedback controller to be activated

when the measured (or estimated) system state in-

dicates that the rear toe is indeed stationary. Here,

the vector of unknown quantities is

v :=
[
F1 F2 F3 α̈ F zc F y1

]
(9)

c := α ,

leaving a system with a single degree of freedom —

the body pitch α. In this case, however, the mo-

ment balance for the rear leg is slightly different

and includes the unknown horizontal ground reac-

tion force, yielding

l cos γ1F1 + l sin γ1F
y
1 = −τ1 . (10)

while the moment balance equations for the mid-

dle and front legs remain the same as (5). Finally,



9

the balance equations for the body link now take

the form

F y1 + µ̄2F2 + µ̄3F3 − µ̄b F zc −mÿb = 0

F1 + F2 + F3 + F zc −mz̈b = mg

3∑

i=1

di cosαFi −
3∑

i=2

diµ̄i sinαFi

−d1 sinαF y1 + ((h+ µ̄bd) sinα

+(µ̄bh− d) cosα)F zc − Iα̈ =

3∑

i=1

τi

(11)

Similar to the previous two models, system kine-

matics yields the body accelerations ÿb and z̈b as

functions of α̈ we use (10) and (11) to compute the

matrices A(c), b(c, ċ) and D(c).

G. Existence of Solutions and Leg Jamming

In preceding sections, we presented a number of

constrained models with their associated equations

in the unknown forces and accelerations. However,

the equations by themselves do not ensure the exis-

tence of solutions. In this section, we present condi-

tions sufficient for these model to admit solutions,

and show that the flipping controller operates within

the resulting consistent regions in the state space.

In this context, a major singularity arises in com-

puting the ground reaction forces on sliding legs us-

ing the moment balance equation (5). To illustrate

the inconsistency, suppose that leg i is sliding for-

ward with ẏi > 0 and the leg is within the friction

cone with cot γi < µt. When τi < 0, the massless

legs in our model require a positive vertical compo-

nent for the ground reaction force, Fi > 0. However,

solution of the leg moment balance equation yields

Fi = − τi
l cos γi − lµt sin γi

< 0 , (12)

resulting in an inconsistency. Consequently, when

the leg is sliding forward and is inside the friction

cone, there are no consistent solutions for the un-

known forces and accelerations.

It turns out that this problem is a special case

of the well known Painlevé’s problem of a rigid rod

sliding on a frictional surface [14], [21]. For certain

parameter and state combinations, it is impossible

to find any consistent set of finite forces and acceler-

ations and one needs to seek impulsive solutions for

the unknown quantities. This problem and its vari-

ations stimulated a large body of work in frictional

collisions [2], [29], [30], [33], which hypothesize that

the rigid rod would “jam” in such cases and start

pivoting around its toe.

Even though such impulsive force based ap-

proaches are extremely useful in evaluating the

equations of motion for simulation purposes, their

utility diminishes significantly when our goal is the

design of a feedback controller. Even very small

parametric errors or sensor noise could result in the

measured state becoming inconsistent, putting the

system outside the domain of the model-based con-

troller. Unlike simulated systems, we do not have

the luxury of applying impulsive forces to a physi-

cal robot through its actuators to bring it to a state

where consistent solutions exist.

Fortunately, empirical evidence accumulated over

months of physical experiments with the robot re-

veals that in the absence of dramatic external dis-

turbances, RHex operates in regions of its state

space away from these singularities. Starting from a

stationary position, the front four legs always slide

backward which guarantees a solution for the asso-

ciated ground reaction forces. Furthermore, even

though the rear legs usually slide forward, RHex’s

kinematics ensure that the orientation of the rear

two legs is always outside the friction cone, yield-

ing a consistent solution for the associated reaction

forces. Finally, the body link always slides forward

and admits a consistent solution once the toe reac-

tion forces are identified.
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IV. Model Based Control of Flipping

We have presented in previous sections, the equa-

tions of motion for a variety of planar flipping

models that are constrained versions of the generic

model described in Section III-B. In this section,

we use these models to design a controller that is

capable of performing dynamic back flips with our

hexapod platform.

In particular, our controller attempts to maximize

the acceleration of the body pitch, while maintain-

ing contact of the body endpoint with the ground

and respecting torque constraints of the motors.

Depending on the current measured (or estimated)

state of the rear toe, the appropriate model is chosen

among those presented in Sections III-E and III-F in

formulating the maximization problem. The result-

ing feedback controller implicitly defines a switching

law based on the physical state of the rear toe, with

no explicit discrete internal states. On RHex, di-

rect measurement of toe stiction is not possible and

we instead use an empirically designed estimator,

described in Section V-C.

For both planar models, when the system is far

from singular regions described in Section III-G, the

unknown forces and accelerations can be computed

by directly solving (3), yielding

v = A−1(c)b(c, ċ) + A−1(c)D(c) τ . (13)

Both constrained systems are underactuated and

direct inversion of these dynamics to obtain torque

solutions is generally not possible. Furthermore, our

task is not specified in terms of particular choices of

ground reaction forces and accelerations. Rather,

we are interested in the (in)stability properties of

particular degrees of freedom in the system, partic-

ularly the body pitch, as well as various constraints

arising from our assumptions in Section III-A. As

a consequence, our controller is based on a con-

strained optimization formulation informed by the

underlying dynamics.

A. Constraints on Control Inputs

The first set of constraints in solving (13) arises

from physical limitations of the actuators in RHex.

Torque limitations for the simplest, resistive model

of a geared DC motor arise from the interaction be-

tween the back EMF voltage, the maximum avail-

able supply voltage and the armature resistance.

Our model based controller is designed to respect

constraints based on this simple model for each mo-

tor, yielding decoupled torque limits in the form

Kτhg(−vs − φ̇i
mgKs

)

mg(ra + rd)
< τi <

Kτhg(vs − φ̇i
mgKs

)

mg(ra + rd)
,

(14)

where vs is the supply voltage, ra and rd are the

armature and drive resistances, Ks and Kτ are the

speed and torque constants and finally, mg and hg

are the gear ratio and efficiency. These limits clearly

depend on the system state through the motor shaft

velocities φ̇i.

We introduce a second constraint on the control

inputs to ensure that Assumption 3 holds. Our con-

trollers must explicitly enforce body-ground contact

throughout the progression of the remaining degrees

of freedom. Fortunately, this requirement is easily

captured through the constraint

F zc > 0 . (15)

an inequality that is linear in the input torques as

can be seen from the corresponding component of

(13).

Definition 1 For a particular state q ∈ Q, we de-

fine the corresponding set of allowable torques, T (q)

as the set of all torque input vectors τ ∈ R3 such

that

F zc (q, τ ) ≥ 0

∀i, Fi(q, τ ) ≥ 0

∀i, τmini (q) ≤ τi ≤ τmaxi (q) .
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B. Maximal Thrust Control

For both models of Section III-E and III-F, the

solutions for α̈ and ÿt are continuous functions of the

input torques. For any given state, this functional

relationship is defined through our hybrid toe con-

tact model and the solutions for the ground reaction

forces, subject to the constraints described in the

previous section. As a consequence, the problem of

choosing hip controls to maximize thrust becomes

a constrained optimization problem over the allow-

able input torque space.

Definition 2 Given the current state q ∈ Q, we

define the maximal torque input τ ∗ as the torque

vector that yields the maximum pitch thrust:

τ ∗(q) := argmax
τ ∈ T (q)

(α̈(q, τ )) .

Fortunately, the solutions of (13) depend linearly

on the input torques. Consequently, the constraints

in Definition 1 as well as the objective function,

α̈(q, τ ), are linear in the input torques as well. As

a result, standard linear programming techniques

can be employed to identify efficiently the maximal

torque solution τ ∗. In particular, we use a sim-

ple geometric solution that exploits the low dimen-

sion and the largely decoupled structure of the con-

straints [23]. Specifically, the motor torque limits of

(14)can be expressed as an axis-aligned constraint

cube in 3-space, which we then intersect with the

plane defined by the inequality constraint of (15).

The optimal solution can be obtained by simply

evaluating the objective function on the vertices of

the resulting intersection polygon as well as the cor-

ners of the cube.

In summary, we start by computing the unknown

forces and accelerations for the current system state

as affine functions of the torque inputs using (13). It

is then straightforward to construct the linear con-

straints of Definition 1. Finally, a geometric, com-

putationally efficient algorithm is used to find the

exact solution to the resulting linear programming

problem, maximizing the thrust to the pitch degree

of freedom while maintaining body-ground contact

and respecting the limitations of the actuators. It is

important to note that these computations are suf-

ficiently simple as to be implemented in real time

(∼500 Hz) on the 300MHz Pentium class processor

used in RHex’s control system.

C. Hybrid Energy Pumping

Depending on the frictional properties of the sur-

face, our maximal thrust controller may or may not

inject sufficient energy to complete the flip. In cases

where it fails to achieve the sufficient energy level

in the first attempt, our controller uses the same

strategy as the first generation controller presented

in Section II-A. Once the body starts falling, lo-

cal PD loops servo all legs to predetermined angles

and wait until the collision of the front legs with the

ground.

In order to recover as much of the impact kinetic

energy as possible before the next thrust cycle, our

controllers position the front leg vertically prior to

impact, exposing the (passive) radial compliance of

the leg to the bulk of the work performed. The ver-

tical placement also avoids slippage of the leg as well

as friction losses and, as noted above, eliminates the

need for the motor to apply any torque during the

collision due to the kinematically singular configu-

ration. Moreover, during the decompression of the

front leg, the middle and back legs can still apply

additional thrust to inject energy even during the

collision.

It would be possible to extend the continuous dy-

namics of Section III to incorporate compliance and

other dynamical reaction forces of the front leg so

as to construct a “stance phase” model that might

then be integrated to obtain a more accurate predic-

tion of the body kinetic energy returned at the next

leg liftoff event. Examples of such predictive mod-



12

els can be found in the literature [9]. However, their

accuracy is still hostage to the difficulty of determin-

ing the dynamic properties of materials as well as

other unmodeled effects [4], [5].

In consequence, we chose to incorporate a purely

algebraic collision law in our model, where a

single coefficient of restitution −1 ≤ kr ≤ 1

summarizes the incremental effects of leg com-

pression/decompression and additional thrust con-

tributed by the middle and back legs during the

decompression of the front legs. In doing so, we

assume that no torque is applied to the front legs

during the collision, constraining impulsive forces to

act along the leg. Furthermore, we require that the

impact occurs while the leg is within the friction

cone to avoid toe slip. Finally, we assume that the

tail of the body comes to rest (ẏb = 0) during the

fallback of the body, leaving the system with only

one degree of freedom — the pitch, α. In light of

these assumptions, we use the algebraic law

α̇+ = −kr α̇− , (16)

relating the pitch prior to and following the collision

(α̇− and α̇+, respectively) to verify that the result-

ing impulsive forces on the body do not cause liftoff

of the tail. This yields appropriate initial conditions

for the subsequent thrust phase. Again, empirical

evidence reveals that these simplifying assumptions

approximate well the physical behavior that RHex

exhibits in the vast majority of circumstances2. As

our experimental platform has no means for detect-

ing tail liftoff and subsequent compensation, we use

a conservative choice for the front leg angle prior to

impact to minimize chances for such an event.

2Due to the lack of sensing of the translational body coor-

dinates in RHex 1.5, our only evidence for this observation

comes from qualitative analysis of video footage from flipping

experiments.

V. Experimental Results

A. Experimental Platform

The most recent version of the robot, RHex 1.5,

adopted for the present experiments, has a rigid

body that measures 50x20x15 cm, and houses all

the computational and motor control hardware, in-

cluding batteries and two PC104 stacks for control

and vision tasks. Each leg is directly actuated by

a Maxon RE118751 20W brushed DC motor com-

bined with a Maxon 114473 two-stage 33:1 plane-

tary gear [12], delivering an intermittent stall torque

of 6Nm at 24V. The total weight of the robot is

roughly 8.5kg.

In contrast to the earlier versions, RHex 1.5 in-

corporates a three-axis gyro for inertial sensing of

the body orientation in addition to the motor en-

coders. Recently developed behaviors on RHex in-

creasingly rely on accurate estimation of the spa-

tial body orientation. As a consequence, we use

a quaternion representation together with integra-

tion of gyro readings at 300Hz to implement a

singularity-free robust estimator, supporting flip-

ping as well as other inertially guided locomotion

primitives [27]. Furthermore, for the flipping be-

havior in particular, we minimize gyro drift by re-

setting orientation estimates following each collision

when it is possible to compute the robot orientation

through kinematics.

The legs on the current RHex are monolithic

pieces of compliant fiberglass, attached to motor

shafts through aluminum hip fixtures. As the third

design iteration on possible leg materials and mor-

phologies, they exhibit significantly improved relia-

bility and compliance characteristics [17]. Each of

the legs in the set used for the experiments in this

paper is roughly 16.5cm long, weighs 80g and has a

radial compliance3 of 1900N/m.

3Even though compliance is critical in RHex’s dynamic lo-

comotion performance, it is not nearly as dominant for the
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B. Approximate Model-based Torque Control

RHex 1.5 does not have hardware support for

controlling the hip actuators in torque mode. Due

to space and power limitations, the current design

operates in voltage mode, where commands from

the onboard computer drive an H-bridge amplifier,

whose output is then fed through a lowpass filter

and connected directly to the armature of the DC

motors at each hip. In order to implement our flip-

ping controller, we use an inverse model of the motor

amplifier – a slight variant of the model described in

[16], with less than 6% prediction error — to achieve

reasonably accurate control of the hip torque.

+

-

+

-

+

-
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Fig. 6. Simple motor model for RHex

Figure 6 illustrates our simple model for the am-

plifier and motor stages, similar to the model intro-

duced in [16]. We assume that the combination of

the PWM amplifier with the LC filter can be ap-

proximated with a passive resistor on the load side

in series with an ideal transformer, whose duty fac-

tor d ∈ [−1, 1] can be arbitrarily commanded. Fur-

thermore, we assume a simple resistive model for

the motor, followed by a gearhead with a reduction

ratio of mg and efficiency of hg.

In order to obtain the desired torque on the out-

put shaft, the commanded duty factor must be cho-

sen to yield an appropriate armature current. A

straightforward solution of the circuit in Figure 6

flipping behavior. Only small discrepancies are introduced in

the leg length due to the radial compliance and the accuracy

of the torque control suffers small delays due to the rotational

compliance of RHex’s legs.

rd 0.45 Ω

ra 1.65 Ω

Ks 59.21 V s/rad

Kτ 0.01763 Nm/A

mg 0.03 leg/mtr

hg 0.8 leg/mtr

TABLE III

Parameters for RHex’s hip motors.

yields

d =
mg(ra + rd)τ

∗
φ

hgKτvs
+

φ̇i
mgKsvs

(17)

as the input command to the PWM amplifier.

Table III summarizes parameter values for RHex’s

motors. In all the experiments reported in this

paper, we used a 1KHz software loop to imple-

ment (17), which yields a steady state RMS error

of around 6% between the actual and desired hip

torques [16].

C. Detection of Toe Stiction

Our switching controller design requires measure-

ment of rear toe velocity to determine which of the

models in Sections III-E and III-F is to be used

for the maximal torque controller. However, RHex

is not equipped with sufficiently accurate inertial

sensors to estimate the translational velocity of the

body. Furthermore, our crude model of the robot

kinematics results in further errors in the transfor-

mation to the leg states, rendering detection of toe

stiction through estimation of body velocity infea-

sible.

Nevertheless, high speed video footage (see Ex-

tension 3) of flipping on various surfaces reveals that

the behavior of the rear toe is very consistent and

regular across different experiments. As the front

and middle legs leave the ground, the rear toes start

sliding forward. Briefly after the liftoff of the mid-

dle legs, the motion of the rear toes come to a stop.
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For the remainder of the thrust, they only move

intermittently and exhibit a stick-slip style low fre-

quency chattering due to the passive compliance in

the legs. This sticking of the rear toes is also consis-

tently marked by a relatively sharp increase in the

pitch acceleration.

Motivated by these observations, we devised a

filter for the pitch acceleration measurements as a

mechanism for detecting toe stiction. Beyond a cer-

tain pitch value where both the front and middle

legs are in flight, we switch to the “stuck” toe model

when there is a “sharp” change in the pitch acceler-

ation. Our sharpness measure is based on manually

tuned threshold parameters, which are specific to

each surface. In the future, we plan to incorporate

estimates of body velocity as well as contact sensors

on the legs, which should eliminate the need for this

filter and the associated manual tuning.

D. Thrust Phase Model Performance

In this section, we present experimental data to

establish the baseline performance of our thrust con-

troller on linoleum, a slippery surface with relatively

consistent frictional properties.

For the experiments presented in this section, we

fixed the friction coefficient for the body contact

as µb = 0.4, based on ranges indicated in [13] for

plastic on linoleum type surfaces. This parameter

has very little effect on controller performance due

to the small associated ground reation force enforced

by the controller.

In contrast, in order to estimate the much more

important toe friction coefficient and assess the cor-

responding model performance, we ran a number

of experiments using approximate measurements of

RHex’s kinematic and dynamic parameters (see Ta-

ble II), for different settings of the toe friction coef-

ficient µt. Four runs were recorded for 15 different

settings in the range µt ∈ [0.1, 0.6] (see Extension 4

for experiment data).

Fig. 7. Sequence of snapshots during flipping on linoleum

with µt = 0.39, for the period where the maximal thrust

controller is active. Subsequent frames in which the robot

falls back and recovers are not included. White arrows

indicate contact points for the toes and the body.

Figure 7 displays a sequence of snapshots for one

of these experiments, extracted from the high speed

video footage of Extension 3. We only included the

most relevant part of the experiment, which is the

period where the maximal thrust controller was ac-

tive. A number of important details are illustrated

by these snapshots. Firstly, the tail of the robot

remains in contact with the ground throughout the

whole run, which indicates the controller’s success

in maintaining its constraints. Second, throughout

flipping, the front two legs slide backwards, whereas

the rear legs and the body contact are sliding for-

ward, which justifies our static assumptions for the

directions of frictional forces to yield µ̄i. Finally,

even though it is hard to recognize in the snapshots

alone, rear toe stiction and chattering in the second
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half of flipping is evident in the associated video

footage of Extension 3.

For each experiment, we logged the pitch rate and

angle measurements. We computed the model pre-

diction for the pitch acceleration using (13), subse-

quently integrated to obtain the model predictions

for the pitch rate4. The results are then compared

with the actual measurements to characterize the

accuracy of the model predictions.
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can be used to generate this figure.

Figure 8 plots the RMS error between the mea-

sured and predicted pitch rates for different friction

coefficients. For each setting, the mean and stan-

dard deviations across four repeated experiments

are shown. The best model performance is obtained

for µt u 0.4. Considering various levels of approx-

imations used in our model, including the inaccu-

racies in the kinematic and dynamic parameters,

unmodeled compliance in RHex’s legs and the ap-

proximate software torque control, the RMS error

of 0.4rad/s is surprisingly small — less than 10% of

the maximum speed attained during the flip.

4Note that the integral of the predicted acceleration

throughout the experiment is not the same as a pure sim-

ulation of the model dynamics.

Figure 9 illustrates the best run with µt = 0.39,

resulting in an RMS error in the pitch rate predic-

tion of 0.4rad/s. Figure 10 portrays a similar com-

parison between the actual robot performance and a

pure simulation with the same initial conditions and

model parameters (see Extension 4 for data). The

reader must bear in mind two qualifications in com-

paring these two figures. First, the simulation uses

a fixed supply voltage at 23.5V , roughly modeling

the average battery voltage drop during the exper-

iments. Second, for the simulated model, we re-

place the model switching logic of Section V-C with

a direct measurement of the toe velocities, yielding

proper detection of toe stiction.
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Fig. 10. Pure simulation predictions for pitch velocity(left)

and acceleration(right) compared to the experiment with

best model performance (µt = 0.39). Solid lines indi-

cate simulated model trajectories whereas dashed lines

show the actual measurements. Shaded regions indi-

cate different number of legs in contact with the ground:

dark(3), middle(2) and light(1). The script PlotSimula-

tionData.m of Extension 4 can be used to generate this

figure.

These results suggest that our model provides an

accurate quantitative representation of the thrust

phase. Nevertheless, there are a number of inaccu-

racies in its prediction, mainly visible in the pitch

acceleration plots. Most significantly, our model

fails to predict the large overestimation of the ini-

tial acceleration and the subsequent, relatively large

oscillations in the measured acceleration.

We believe that the origin of both discrepancies

is the compliance in RHex’s legs. The initially un-
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compressed legs introduce some delay in responding

to the torque commands, resulting in a small delay

in the measured pitch acceleration. A similar ef-

fect is visible subsequent to the liftoff of the middle

legs which also causes oscillations due to the sudden

loading of the rear legs.

Nevertheless, most of these differences do not sig-

nificantly influence the average performance of the

model prediction. In addition to the accurate pre-

diction of the pitch velocity, the robot successfully

keeps its tail on the ground and consistently per-

forms successful flips on linoleum in a single thrust

(see Figure 7 and Extension 3).

For a better understanding of the controller per-

formance, it is also useful to look at the resulting

motor commands. Figure 11 illustrates torque out-

puts of combined pairs of rear, middle and front legs

estimated using the motor model of (17). Through-

out the first phase, when all the legs are in contact

with the ground, the controller applies maximum

available torque to all the legs, which decreases as

the motor shafts rotate faster. Following the liftoff

of the front legs, the body ground reaction force con-

straint becomes dominant and the torque output to

the rear legs is constrained to avoid tail liftoff. This
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model performance (µt = 0.39). Solid, dashed and dash-
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respectively. Shaded regions indicate different number
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continues through the liftoff of the middle legs, until

the detection of rear toe stiction (see Section V-C).

The underlying model is then switched to that of

Section III-F. Towards the end of the flip, the tail

liftoff constraint becomes dominant once again due

to centrifugal forces.

E. Multi-Thrust Flipping on Linoleum

In this section, we present experimental data on

flipping through multiple thrust phases. As in the
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previous section, we use a linoleum surface for these

experiments due to the consistency of its frictional

properties.

On linoleum, our maximal thrust controller on

RHex always performs a backflip in a single thrust

phase. Consequently, we artificially scale the torque

limits of (14) to decrease the injected energy dur-

ing each cycle necessitating multiple thrust phases

to flip the robot over. In particular, we decrease

the torque limits for the front, middle and rear leg

pairs by 90%, 20% and 20%, respectively, from the

actual constraint computed using (14). The larger

reduction of the front leg torque limits is intentional

and significantly decreases the energy injected in the

first thrust phase — the only time period in which

front legs do any active work. As a result, the first

thrust is forced to fail, necessitating additional cy-

cles for a successful flip.

We ran 10 experiments on linoleum with these

parameter settings, all of which successfully flipped

RHex after three thrust phases (see Extension 4 for

experiment data). A representative experiment is il-

lustrated in Figure 12, where the first thrust phase

failed to flip the robot over and two more cycles

were needed before enough energy was injected into

the system. In the following paragraphs, we present

a number of features of Figure 12 that were consis-

tently observed in all 10 experiments.

Our first observation is that the coefficient of

restitution for the collision of the front legs with

the ground is approximately 0.67. Even though this

coefficient is primarily a function of the material

properties of the front legs, there is also some con-

tribution from the middle and rear legs. In par-

ticular, our approximate kinematic model results in

premature contact of middle and rear legs with the

ground during the compression of the front leg, re-

sulting in undesired negative work. In contrast, the

maximal thrust controller is engaged as the pitch ve-

locity changes sign, yielding additional thrust from

the middle legs prior to the end of the collision.

Two aspects of the velocity plot are also impor-

tant to note. Firstly, there is a significant decelera-

tion at the beginning of the second and third thrust

phases (indicated by horizontal arrows in Figure 12),

which is not present in the very first thrust. This

is once again, primarily due to the compliance in

the legs, which introduces a delay in the action of

torque commands through the legs. As the mid-

dle and rear leg springs are very close to their rest

positions following the collision, the body does not

immediately feel the torque commands acted by the

maximal thrust controller, resulting in a brief decel-

eration.

The second aspect concerns the sharp drops in

the velocity following the end of each thrust cycle

(indicated by the vertical arrows in Figure 12), as

the robot body starts to fall towards the rebound.

As described in Section IV-C, this is when local PD

controllers for each leg are activated to bring them

to fixed angles in preparation for the collision. Even

though the legs have relatively small mass (0.48kg

total) compared to the robot body, their sudden

movement effects the body velocity.

F. Performance of the Open-Loop Controller

As noted in Section II-B, our first generation flip-

ping controller was primarily open-loop at the task

level, with only local feedback at the hips for PD

control of the motor angles and crude detection of

maximum pitch at each thrust. With this simple

initial design, we were able to achieve successful flip-

ping maneuvers over a reasonable range of surfaces

on an earlier version of RHex [25], [26]. However,

with new sensors, improved computational hard-

ware as well as structural ruggedization, RHex’s

newest version, 1.5, is heavier and slightly larger,

resulting in consistent failure of the open-loop con-

troller.

Figure 13 illustrates an example on linoleum,
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figure.

which is one of the least challenging surfaces for

flipping with its low friction (see Extension 4 for

experiment data). For this experiment, we manu-

ally tuned motor gains and leg trajectories in an

attempt to gain as much thrust as possible while

keeping the tail on the ground. Invariably, the un-

availability of system state forced our tuning to be

overly conservative, making it impossible to harvest

maximum performance. As a consequence, our sim-

ple first generation controller consistently fails to

flip over even after several thrust phases, unable to

exceed a maximum pitch value of around 0.75rad.

G. Flipping on Rugged Surfaces

Fig. 14. Snapshots of flipping on various rough surfaces. a:

carpet, b: asphalt, c: packed dirt, d: thin grass, e: thick

grass.

The final set of experiments we present charac-

terize the performance of model based flipping on

a number of indoor and outdoor surfaces. Figure
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terrain µt success thrusts

packed dirt 0.55 100% 1

asphalt 0.6 100% 1

carpet 0.7 100% 1

thin grass - 90% 1

thick grass - 0% -

TABLE IV

Model based flipping performance on hard and soft

rough surfaces. See Extensions 5, 6, 7, 8 and 9 for

sample movies and Extension 4 for experiment data.

14 illustrates each of these surfaces with snapshots

from associated experiments. The associated video

footage is also included in Extensions 5, 6, 7, 8 and

9.

This section presents two families of experiments:

flipping on hard surfaces with consistent frictional

properties — carpet, asphalt and packed dirt —

and flipping on soft outdoor surfaces — thin and

thick grass — for which quantitive characterization

is much less feasible due to the high level of incon-

sistency and variation in surface properties across

experiments.

For the experiments on hard surfaces, we ran sets

of three experiments for 10 different settings of the

leg/ground coefficient of friction. As in Section V-

D, we compared model predictions to measured per-

formance to identify the frictional properties of each

surface. The first three rows of Table IV summarize

the coefficients of friction we identified for each hard

surface, as well as the performance of model based

flipping with the identified parameter in terms of the

percentage of success and the number of required

thrusts.

On all hard surfaces, the robot successfully

flipped over for each attempt. In all cases, no more

than a single thrust phase was required. For these

experiments, we did not explicitly tune the detec-

tion algorithm for toe stiction, so the there was sig-

nificant variability in controller performance follow-

ing the liftoff of the middle legs (see Extension 4).

As a consequence, in identifying the friction coef-

ficient for each surface, we only considered errors

in the pitch rate estimation prior to the switching

of the model. In practice, the effect of the model

discrepancy on the flipping performance beyond the

liftoff of the middle legs turns out to be not signif-

icant as the motor torque limits dominate over the

remaining constraints.

Characterization of flipping performance on soft

surfaces is much more challenging due to their in-

herent irregularity. Unlike the hard surfaces, more

than two or three experiments on the same loca-

tion result in the legs digging in the grass, changing

the associated frictional properties. Furthermore,

it is unreasonable to hope that the Coulomb fric-

tion model will be accurate in modeling the sliding

of the legs in thick grass, which usually results in

wedging and other unpredictable outcomes. Conse-

quently, we only ran 10 experiments on both thin

and thick grass and did not attempt to identify the

frictional properties of these surfaces. The second

part of Table IV presents the success percentages of

these experiments.

Not surprisingly, thick grass presents a significant

challenge and the robot is not able to flip even with

multiple thrust attempts (see Extension 8). On the

other hand, thinner grass is much less demanding

and usually admits flipping in a single thrust (see

Extension 9). This is a significant improvement over

the first generation open loop controller, which was

incapable of inducing a flip even with the lighter and

smaller RHex 0.5.

VI. Conclusion

In robotic locomotion research, autonomy is likely

to impose some of the most demanding constraints

on design and limitations on behavior. It is very
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difficult, often impossible to achieve in systems

otherwise designed for non-autonomous operation.

RHex, our hexapedal platform, demonstrated that

autonomy as a design goal can achieve significant

advances in real world performance and robustness.

In this paper, we present a new controller to im-

plement self-righting behavior on RHex, which is

perhaps the simplest instance of self-manipulation

other than locomotion itself. Our modeling and

analysis yields significant improvements to the sim-

ple first generation controller, extending its domain

of success to a wider range of terrain conditions.

We present empirical evidence to verify the validity

of our model and to document the performance of

a new model based controller. We show that the

maximal thrust controller we introduce performs

successful flipping maneuvers on linoleum, carpet,

packed dirt, asphalt and thin grass, usually with

only a single thrust phase. We also demonstrate an

“energy pumping” scheme, designed to handle dis-

turbances or terrain conditions which may induce

the failure of the first thrust attempt. In each case,

we present empirical evidence to compare model

predictions to actual measurements of robot perfor-

mance.

The design of the new model based controller

makes a few simplifying assumptions to make a real

time implementation feasible. Relaxation of these

assumptions through more formal analysis of the

preliminary model we described in this paper is also

of great interest. Extensions of the flipping behavior

such as uninterrupted rolling or handstands will re-

quire a much better analytical understanding of the

model. We believe that, such extensions to the be-

havioral suite of a morphology as limited as RHex,

is the best way to address the shortcomings of con-

temporary actuation and energy storage technology

while continuing to press ahead in the development

of practically useful robots.
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Index to multi-media Extensions

Extension 1. Video: OpenLoopSingleShot.mpg. RHex

0.5 flipping on linoleum with the original open-loop con-

troller.

Extension 2. Video: OpenLoopCarpet.mpg. RHex

0.5 flipping on carpet with the original open-loop controller.

Multiple thrusts are required for a successful flip.

Extension 3. Video: LinoleumSingleShot.mpg. High

speed video (150fps) of RHex 1.5 flipping on linoleum with

the model based controller.

Extension 4. Data: data scripts.tar.gz. Data files

and visualization scripts for all the experiments and simu-

lations. Please see README.txt in this archive for details

on the format of data files and the usage of associated scripts.

Extension 5. Video: ModelBasedCarpet.mpg. RHex

1.5 flipping on carpet with the model based controller.

Extension 6. Video: ModelBasedDirt.mpg. RHex

1.5 flipping on packed dirt with the model based controller.

Extension 7. Video: ModelBasedAsphalt.mpg. RHex

1.5 flipping on asphalt with the model based controller.

Extension 8. Video: ModelBasedThickGrass.mpg.

RHex 1.5 failing to flip on thick grass with the model based

controller.

Extension 9. Video: ModelBasedThinGrass.mpg.

RHex 1.5 flipping on thin grass with the model based con-

troller.
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